3,468 research outputs found

    Artificial Intelligence

    Get PDF
    Contains research objectives.National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-04)National Aeronautics and Space Administration (Grant NsG-496

    Artificial Intelligence

    Get PDF
    Contains research objectives.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-03)National Aeronautics and Space Administration (Grant NsG-496

    Applying a global optimisation algorithm to Fund of Hedge Funds portfolio optimisation

    Get PDF
    Portfolio optimisation for a Fund of Hedge Funds (“FoHF”) has to address the asymmetric, non-Gaussian nature of the underlying returns distributions. Furthermore, the objective functions and constraints are not necessarily convex or even smooth. Therefore traditional portfolio optimisation methods such as mean-variance optimisation are not appropriate for such problems and global search optimisation algorithms could serve better to address such problems. Also, in implementing such an approach the goal is to incorporate information as to the future expected outcomes to determine the optimised portfolio rather than optimise a portfolio on historic performance. In this paper, we consider the suitability of global search optimisation algorithms applied to FoHF portfolios, and using one of these algorithms to construct an optimal portfolio of investable hedge fund indices given forecast views of the future and our confidence in such views.portfolio optimisation; optimization; fund of hedge funds; global search optimisation; direct search; pgsl; hedge fund portfolio

    Artificial Intelligence

    Get PDF
    Contains research objectives.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-02)Computation Center, M.I.T

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    Theory of spike timing based neural classifiers

    Full text link
    We study the computational capacity of a model neuron, the Tempotron, which classifies sequences of spikes by linear-threshold operations. We use statistical mechanics and extreme value theory to derive the capacity of the system in random classification tasks. In contrast to its static analog, the Perceptron, the Tempotron's solutions space consists of a large number of small clusters of weight vectors. The capacity of the system per synapse is finite in the large size limit and weakly diverges with the stimulus duration relative to the membrane and synaptic time constants.Comment: 4 page, 4 figures, Accepted to Physical Review Letters on 19th Oct. 201

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 3: ARAMIS overview

    Get PDF
    An overview of automation, robotics, and machine intelligence systems (ARAMIS) is provided. Man machine interfaces, classification, and capabilities are considered

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Get PDF
    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS

    Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented
    corecore